Respuesta :
Answer:
1 over the quantity x plus 4 squared
Step-by-step explanation:
Given expression,
[tex]\frac{x-3}{x^2+x-12}.\frac{x+4}{x^2+8x+16}[/tex]
By middle term splitting,
[tex]\frac{x-3}{x^2+4x-3x-12}.\frac{x+4}{x^2+4x+4x+16}[/tex]
[tex]\frac{x-3}{x(x+4)-3(x+4)}.\frac{x+4}{x(x+4)+4(x+4)}[/tex]
[tex]\frac{x-3}{(x-3)(x+4)}.\frac{x+4}{(x+4)(x+4)}}[/tex]
[tex]=\frac{1}{x+4}.\frac{1}{x+4}[/tex]
Multiply the fractions,
[tex]=\frac{1}{(x+4)^2}[/tex]
= 1 over the quantity x plus 4 squared