The correct answer is option B.
Concept:
- Firstly, we will factorize the given expression.
- We will expand each of the options and will match with the factorized expression.
How to solve the given question?
- Factoring the given expression
3x² + 27
= 3(x² + 9) - Option A : (3x + 9i)(x + 3i)
= (3x + 9i)(x + 3i)
= (3x)(x) + (3x)(3i) + (9i)(x) + (9i)(3i)
= 3x² + 9ix + 9ix + 27i²
= 27i² + 18ix + 3x² - Option B: (3x - 9i)(x + 3i)
= (3x + - 9i)(x + 3i)
= (3x)(x) + (3x)(3i) + ( - 9i)(x) + (- 9i)(3i)
= 3x² + 9ix - 9ix - 27i²
= 27i² + 3x² - Option C: (3x - 6i)(x + 21i)
= (3x + - 6i)(x + 21i)
= (3x)(x) + (3x)(21i) + (- 6i)(x) + ( -6i)(21i)
= 3x² + 63ix - 6ix - 126i²
= - 126i² + 57ix + 3x² - Option D: (3x - 9i)(x - 3i)
= (3x + - 9)(x + - 3)
= (3x)(x) + (3x)( - 3i) + (- 9)(x) + ( - 9)( - 3i)
= 3x² - 9ix - 9x + 27i
= 9ix + 3x² + 27i - 9x
Thus, the correct answer is option B.
Learn more about factorization here:
https://brainly.com/question/723406
#SPJ2