Respuesta :

Before starting, there's a formula that will be crucial to solving all this.

The formula states the following:
[tex]\dfrac{a+b}{c}= \dfrac{a}{c }+ \dfrac{b}{c}[/tex]

Polynomial 1:

[tex]\dfrac{12x^3+9x}{3x}[/tex]

Use the formula shown in the beginning of this answer.

[tex]\dfrac{12x^3}{3x}+ \dfrac{9x}{3x}[/tex]

Now, we only have to simplify each term.
Since you're tackling problems such as these, you should be familiar on exponential rules, so I hope you can follow along.

[tex]\dfrac{(4x^2)(3x)}{3x}+ \dfrac{3(3x)}{3x}[/tex]

[tex]=4x^2+3[/tex]

Polynomial 2:

[tex]\dfrac{8x^4 y^3 - 4x^7 y^5}{2xy^2}[/tex]

Use the formula shown in the beginning of the answer

[tex]\dfrac{8x^4 y^3}{2xy^2} - \dfrac{4x^7 y^5}{2xy^2}[/tex]

[tex]= \dfrac{(4x^3 y)(2xy^2)}{2xy^2} - \dfrac{(2x^6 y^3)(2xy^2)}{2xy^2}[/tex]

[tex]=4x^3y-2x^6y^3[/tex]

Polynomial 3:

[tex]\dfrac{4x^3+5x^2+3x}{x}[/tex]

Use the formula shown in the beginning of the problem (pretty much the same for 3 terms as well).

[tex]\dfrac{4x^3}{x}+\dfrac{5x^2}{x}+\dfrac{3x}{x}[/tex]

[tex]=4x^2+5x+3[/tex]

If you have any comments/questions, feel free to comment and I'll be happy to clarify.