What is the approximate length of arc s on the circle below? Use 3.14 for pi. Round your answer to the nearest tenth.

What is the approximate length of arc s on the circle below Use 314 for pi Round your answer to the nearest tenth class=

Respuesta :

[tex]\bf \textit{arc's length}\\\\ s=\cfrac{\theta \pi r}{180}~~ \begin{cases} r=radius\\ \theta =angle~in\\ \qquad degrees\\ ------\\ r=12\\ \theta =330 \end{cases}\implies s=\cfrac{(330)(\pi )(12)}{180}\implies s=22\pi [/tex]

we know that

To find the length of arc S on the circle, use proportion


[tex]\frac{central\ angle}{360\°}= \frac{arc\ length\ s}{2\pi r}[/tex]

in this problem we have

[tex]central\ angle=330\°\\r=12\ ft\\pi=3.14[/tex]

substitute

[tex]\frac{330\°}{360\°}= \frac{arc\ length\ s}{2*3.14*12} \\ \\arc\ length\ s= \frac{330\°*2*3.14*12}{360\°} \\ \\arc\ length\ s= 69.08\ ft[/tex]

Round to the nearest tenth

[tex]arc\ length\ s= 69.1\ ft[/tex]

therefore

the answer is

[tex]arc\ length\ s= 69.1\ ft[/tex]