Respuesta :
(sin O - cos O) - (sin O + cos O)^2
= sin O - cos O - (sin^2 O + cos^2 O + 2 sin O cos O)
= sin O - cos O - ( 1 + 2 sin O cos O)
Distributing the negative over the second set of parentheses:-
= sin O - cos O - 1 - 2 sin O cos O
= -2 sin O cos O - cos O + sin O - 1 (answer)
Its the last choice.
= sin O - cos O - (sin^2 O + cos^2 O + 2 sin O cos O)
= sin O - cos O - ( 1 + 2 sin O cos O)
Distributing the negative over the second set of parentheses:-
= sin O - cos O - 1 - 2 sin O cos O
= -2 sin O cos O - cos O + sin O - 1 (answer)
Its the last choice.
Answer:
−2sin(Θ)cos(Θ) − cos(Θ) + sin(Θ) − 1
Step-by-step explanation:
[tex](sin O - cos O) - (sin O + cos O)^2[/tex]
[tex](sin A + cos A)^2= sin^2A + cos^2A+2sinAcosA[/tex]
Apply identity, sin^2A+cos^2A= 1
[tex](sin O - cos O) - (sin O + cos O)^2[/tex]
Replace 1 for sin^2O+cos^2O= 1
[tex](sin O - cos O) - (sin O + cos O)^2[/tex]
[tex](sin O - cos O) -(1+2sin(O)cos(O))[/tex]
REmove the parenthesis and simplify if possible
[tex]sin O - cos O -1-2sin(O)cos(O))[/tex]
So option D is correct