Respuesta :

(3,4) is the answer, with x=3 and y=4

Answer:

[tex](8,1)[/tex]

Step-by-step explanation:

We have been given a system of linear equations:

[tex]2x+4y=20...(1)[/tex]

[tex]3x+2y=26...(2)[/tex]

We will use substitution method to solve linear equation. From equation (1) we will get,

[tex]x=\frac{20-4y}{2}[/tex]

Substituting this value in equation (2) we will get,

[tex]3*\frac{20-4y}{2}+2y=26[/tex]

[tex]\frac{60-12y}{2}+2y=26[/tex]

Let us have a common denominator.

[tex]\frac{60-12y}{2}+\frac{2*2y}{2}=26[/tex]

[tex]\frac{60-12y}{2}+\frac{4y}{2}=26[/tex]

[tex]\frac{60-12y+4y}{2}=26[/tex]

[tex]\frac{60-8y}{2}=26[/tex]

[tex]\frac{60-8y}{2}*2=26*2[/tex]

[tex]60-8y=52[/tex]

[tex]60-60-8y=52-60[/tex]

[tex]-8y=-8[/tex]

Upon dividing both sides by [tex]-8[/tex] we will get,

[tex]\frac{-8y}{-8}=\frac{-8}{-8}[/tex]

[tex]y=1[/tex]

Upon substituting [tex]y=1[/tex] in equation (1) we will get,

[tex]2x+4*1=20[/tex]

[tex]2x+4=20[/tex]

[tex]2x+4-4=20-4[/tex]

[tex]2x=16[/tex]

Upon dividing both sides of the equation by 2 we will get,

[tex]\frac{2x}{2}=\frac{16}{2}[/tex]

[tex]x=8[/tex]

Therefore, the solution of our given system of equations is [tex](8,1)[/tex].